omcs(omc是什么车)

包装机知识 7小时前

本文目录一览:

OMCSA软件怎么设置中文

以hellopal软件为例,如果一开始是英文界面,就需要点击底部工具栏的me。

如果是其它软件一般也都是最后一个设置按钮。在setting界面中找到languages选项,点击进入。在applicationlanguage中可以看到当前使用的界面语言为英文,点击进入语言列表。找到中文简体,选择该语言即可。选择中文语言后,可以看到所有的软件界面都已经改为中文了。对于安卓手机,需要选择默认的手机界面为中文,这样所有安装的软件才会默认选择为中文界面。进入设置-全部设置。找到系统-语言和输入法。在系统语中可以看到当前选择的语言类型。点击进入语言列表,选择中文简体即可

热带气旋等级

热带气旋是发生在热带或副热带洋面上的低压涡旋,是一种强大而深厚的热带天气系统。[1]即产生于热带洋面上的中尺度或天气尺度的暖性气旋[2]。可见于西太平洋及其临近海域(台风)、大西洋和东北太平洋(飓风)以及印度洋和南太平洋[3]。

热带气旋常见于夏秋两季,其生命周期可大致分为生成、发展、成熟、消亡4个阶段,其强度按中心风速被分为多个等级,在观测上表现为庞大的涡旋状直展云系[2][4]。成熟期的热带气旋拥有暴风眼、眼墙、螺旋雨带等宏观结构,直径在100至2000 km之间,中心最大风速超过30m/s,中心气压可降低至960 hPa左右,在垂直方向可伸展至对流层顶[2][3]。未登陆的热带气旋可能维持2至4周直到脱离热带海域,登陆的热带气旋通常在登陆后48小时内快速消亡[5]。

热带气旋的产生机制尚未完全探明,按历史统计,温暖的大洋洋面、初始扰动、较弱的垂直风切变和一定强度的Beta效应是热带气旋生成的必要条件[2]。在动力学方面,第二类条件性不稳定(CISK)理论能够较好地解释热带气旋的生成和维持[4][6][7][8]全球变暖也被认为与热带气旋的生成频率有关[9]。

热带气旋是发生在热带或副热带洋面上的低压涡旋,是一种强大而深厚的热带天气系统。台风是热带气旋的一种。我国把西北太平洋和南海的热带气旋按其底层中心附近最大平均风力(风速)大小划分为6个等级,其中风力为12级或以上的,统称为台风。[1] 热带气旋是生成和发展于热带海域的暖性气旋系统。产生于西太平洋、西北太平洋及其临近海域的热带气旋被称为“台风(typhoon)”;产生于大西洋和东太平洋的热带气旋被称为“飓风(hurricane)”;产生于印度洋和南太平洋的热带气旋可能被称为“气旋风暴(cyclonic storm)”或简称为“气旋”(cyclone)[2] [10] 。

热带气旋

广义上热带气旋的定义对气旋的强度没有要求,即无论热带气旋处于其生命史中的任何阶段,在广义上都可以被称为“热带气旋”;狭义的热带气旋仅包括处于发展和成熟阶段的强盛气旋,按中心最大风速,其强度必须超过气旋分级系统的最低标准[11] 。例如在大西洋,只有1分钟持续最大风速超过120 km/h的气旋系统会被分类为“严格的”热带气旋,即飓风,低于该标准的暖性气旋会被归于“热带低压(tropical depression)”和“热带风暴(tropical strom)”[11] 。

与热带气旋相近的概念包括亚热带气旋(subtropical cyclone)和温带气旋(extratropical cyclone)。作为区别,温带气旋是存在于中高纬地区的冷性气旋,可生成于海洋或陆地,且在多数情况下由斜压不稳定发展形成并伴随锋面出现[12] 。亚热带气旋是一类介于热带气旋和温带气旋之间的天气系统,其成熟期的形态接近于热带气旋但在动力学上具有和温带气旋相近的冷核(cold core)结构[13] 。

热带气旋与温带气旋的水平(上)、垂直(下)结构差异

作为联系,热带气旋进入温带洋面后有机会转变为温带气旋,温带气旋在少数情形下也可变性成为热带气旋[12] 。亚热带气旋在进入热带洋面并转变为暖核(warm core)结构后会被识别为热带气旋,但当热带气旋通过亚热带洋面时,只要其暖核结构不变,就不会被识别为亚热带气旋。

热带气旋包含大量不稳定能量并可能成为气象灾害,登陆的成熟期热带气旋带来范围显著的破坏性强风、大量降水并伴随有风暴潮、雷暴等次生灾害[4] 。存在于洋面的热带气旋是航运业的重大威胁。现代业务天气预报能够通过卫星遥感识别和观测热带气旋并结合数值天气预报对其发展和移动进行预报和预警[14] [15] 。WMO的主要成员会对各海域的热带气旋进行命名并面向公众发布信息[16] [17] 。

结构

风眼

主条目:风眼

风眼是位于热带气旋旋转中心(通常也为几何中心)的相对平静区域。风眼内可能无云(clear eye)或由低云和中云填充(filled eye),是热带气旋近地面气压的最低点[10] 。风眼内的风速显著低于外围区域,通常不超过24 km/h,很少或无雨,其内部盛行下沉气流,靠近眼墙的边缘区域为气旋性涡度的上升气流。风眼内部和上方大气的位势温度要高于其周围环境[19] 。

台风风眼图

风眼尺寸的常见取值在50 km左右,随高度升高而增长,且北半球热带气旋的风眼直径通常小于南半球热带气旋[20] 。风眼大小的极端的例子包括1960年台风卡门(typhoon Carmen)的370 km和2005年飓风威尔玛(Hurricane Wilma)的3.7 km[21] [22] 。热带气旋的强度对风眼直径敏感,给定相同的热力和动力学条件,风眼直径小的热带气旋具有更高的最大潜在强度[23] 。

随着热带气旋生命阶段的变化,风眼的几何特征会发生改变。快速增强的热带气旋拥有小、清晰且高度对称的风眼,有时被称为“针孔眼(pinhole eye)”、成熟期热带气旋拥有对称的圆形风眼,且风眼被连续的眼墙包围,即“闭合眼(closed eye)”[24] [25] 。处于消亡期或发展不完全的热带气旋具有不规则的风眼,例如眼墙不闭合(open eye)、形态不对称或残片状的风眼[25] 。风眼的动态变化在热带气旋的业务天气预报中可作为参考[24] 。

并非所有的热带气旋都具有成熟期的风眼(闭合眼),按1989至2008年大西洋海域热带气旋的气候统计,60%的飓风个体具有清晰的风眼,且风眼首次出现时,热带气旋中心最大风速的平均值为29.8 m/s,即处于强度略低于1类飓风的阶段[25] 。

眼墙

眼墙是围绕热带气旋风眼形成的塔状直展云系(cumuliform cloud),高度可由海平面伸展至流层顶,对热带海域而言,该高度约为15 km。眼墙内包含旺盛的对流活动并在对流层中层形成潜热释放。眼墙也是热带气旋内风速和单位降水率最大的区域,对眼墙的最大风速进行观测可以估计热带气旋的强度[10] 。

强度较高的发展期和成熟期热带气旋的眼墙可能包括主眼墙和次级眼墙(secondary eyewall)两部分,该现象通常与眼墙置换(eyewall replacement cycle)有关[26] 。当主眼墙内的对流活动达到一定强度时,靠近眼墙的主雨带内侧会有强对流活动发展并形成新的次级眼墙。次级眼墙会逐渐向风眼方向运动,对原先的眼墙进行置换[26] 。眼墙置换期间,由于原先的眼墙由于脱离了有利于对流形成的区域,因此被孤立和削弱,而次级眼墙尚未发展完全,因此热带气旋会发生暂时性的强度下降。眼墙置换完成后,由新眼墙维持的热带气旋会再次增强(re-intensify)[26] 。

1997年的台风艾碧正在进行眼壁置换

外部结构

螺旋雨带

螺旋雨带是完全发展的成熟期热带气旋具有的结构,在本质上是热带气旋内除眼墙外所有对流系统的总和[27] 。螺旋雨带随气旋中心按正涡度方向旋转,切向速度随高度升高而减小,其内部包含不连续的对流性降水[27] 。近地面受螺旋云雨带影响的区域可能出现阵性降水和强风等天气现象,因此在天气预报中,螺旋雨带定义了外围大风区和降水区的位置[28] 。

热带气旋的螺旋雨带通常有“主雨带(principle rainband)”、“次级雨带(secondary rainband)”和“外围雨带(distant rainband)”之分[29] [28] 。其中主雨带也被称为“内雨带(inner rainband)”,是螺旋雨带的主体部分,在气旋的运动过程中几乎与眼墙相对静止[27] ,在一些研究中被认为是热带气旋本体和环境的分界[30] 。次级雨带是围绕主雨带旋转的一组对流单体。外雨带可能沿气旋半径被逐步卷入主雨带中,也可能松散地组织在热带气旋周围[27] 。外围雨带是热带气旋最外侧的零星出现的对流系统的总和,在一些研究中也被称为“外围中尺度对流系统(Outer Mesoscale Convective System, OMCS)”[31] 。

螺旋雨带具有复杂的中尺度结构,按雷达回波的观测结论,在中低层水平面内,螺旋雨带内侧气流背离气旋中心吹向雨带,且强度随高度升高而增强[32] 。螺旋雨带低层是强辐合区,伴随有近地面的外部气流汇入。辐合区的位置随高度偏离气旋中心且辐合强度随高度减弱,在对流层中上层转变为辐散。在沿气旋中心的剖面内,螺旋雨带包含二级垂直环流,其中上升气流位于雨带内侧(辐合区域)且随高度向外侧倾斜,并可能包含对流性强降水,下沉气流位于上升气流外侧,强度低于上升气流[32] 。

螺旋雨带中次级雨带的形成被认为由热带气旋内部涡旋罗斯贝波(vortex Rossby waves)的向外传播有关[33] 。螺旋雨带中主雨带的动力学机制尚未完全明确,数值模拟的结果表明,主雨带在确立后,会改变热带气旋的动力结构,并与眼墙的形成和置换有关[34] 。

外围大风区

热带气旋外部,包括外围雨带的所在区域可观测到强风,其覆盖范围被通称为“外围大风区”,按诊断参量可由“强风半径(gale wind radii)”定义[35] 。强风半径是热带气旋的直接天气影响范围,通常与热带气旋本身一样呈现对称形态[36] 。在热带气旋登陆时,由于下垫面的影响,强风半径内的风速和其范围会发生变化[35] 。

特征

云系

热带气旋的云系是其动力学特征的固有表现,一般地,对流活动产生的直展云系在热带气旋的生成和发展阶段具有处于中心地位[37] ;进入成熟期后,热带气旋也已直展云系为主,其内部包含有旋转的强上升气流和相对较弱的下沉气流。层云可见于热带气旋的风眼,其垂直高度在边界层顶附近,上方是顶部下沉气流。眼墙云以积云族为主,垂直高度可达对流层顶,在卫星云图上表现为中心密集云团区(Central Dense Overcast, CDO)[29] 。

眼墙云在形态上受到气旋内部梯度风平衡, 以及边界层内中性层结气流斜向输送的影响,通常按一定坡度向外伸展,并间歇性地受到其下方由湿静力能驱动的浮力抬升的作用而产生动态变化[29] 。主雨带和次级雨带由对流单体组成,在云系方面也以塔状积云为主,其内部包含翻转上升气流(overturning updrafts)和稳定的下沉气流[29] 。眼墙置换发生时,主雨带和眼墙的云系会发生合并。外围雨带的云系与一般意义上中尺度对流系统内的云系具有相同特征,在形态上由涡旋动力学主导并包含以积雨云为代表的强降水云系[29] 。

特征尺度

热带气旋的空间尺度具有明显的动态变化,一般地,在近地面和对流层中下层,例如700 hPa等压面层,热带气旋可能是一个100 km尺度的中尺度系统或1000 km尺度的天气尺度系统[38] [39] ,其运动被认为受到5000 km以上行星尺度波动和引导气流的影响[40] 。按一些特殊个例,超级台风泰培(super typhoon Tip)的直径达到了2200 km[41] ,而热带风暴马可(Tropical Storm Marco)的直径仅有18.5 km[42] 。热带气旋在一些研究中被认为是”升尺度”的过程,即预先存在的天气尺度气旋性扰动和对流尺度的能量、涡度特征相叠加[29] 。

在时间尺度方面,热带气旋在登陆前通常能存在数周,属于中尺度系统中能长期维持的类型,但少数个例,例如维持了31天的飓风约翰(Hurricane John)[43] ,在时间尺度上可能超过锋面气旋等天气尺度系统。此外,考虑热带气旋变性为温带气旋的情形,其按天气影响估计(而非系统本身)的时间尺度可能更长。

OMCS组件 在广域网上性能,稳定性怎么样?

· OMCS的性能还是很不错的。我们之前开发的一套网络教学软件就是基于OMCS开发的。

因为服务端只是负责数据的转发,几乎没有什么计算工作量,所以内存和CPU并没有多大压力。

在广域网上部署OMCS最重要的因素是带宽——语音视频通话的效果主要取决于网络的质量,既包括客户端的网络质 量也包括服务端的网络质量,以及各个客户端与服务器之间网络的通畅程度和稳定程度。

所以,要想保证良好的语音视频通话质量,最根本的就是要保证良好的网络质量。如果网络质量不好,软件再好, 也是无米之炊。

本文转载自互联网,如有侵权,联系删除

相关推荐

    暂无记录